Posts Tagged ‘VHF’
2017 North America SOTA Events
Here’s your handy list of North American Summits On The Air (SOTA) activities for 2017, as supplied by Guy N7UN:
- Jan 21-22rd: North America SOTA Winter Activity Weekend + ARRL Jan VHF Contest
- Apr 22-23: North America SOTA Spring Activity Weekend + QRPTTF Spring Event (Apr 22)
- Jun 10-11: North America SOTA Summer Activity Weekend + ARRL June VHF Contest
- Jul 15-16: SOTA optional date + CQ WW VHF Contest
- Aug 5-6: North America SOTA Rocky Mtn Rendezvous + Colorado 14er Event + W7 SOTA Activity Weekend + ARRL UHF (222MHz+) Contest
- Aug 21: SOTA and the Great American Total Solar Eclipse of 2017.
- Sept 9-10: North America SOTA Fall Activity Weekend + ARRL Sept VHF Contest
The post 2017 North America SOTA Events appeared first on The KØNR Radio Site.
The Cacophony of Digital Voice Continues (Part 2)
This post is a continuation of The Cacophony of Digital Voice Continues (Part 1), so you probably should read that one first.
All of the popular amateur digital voice (DV) systems (D-STAR, DMR and YSF) use the AMBE vocoder (voice codec) technology. This technology was developed by Digital Voice Systems, Inc. and is proprietary technology covered by various patents. The use of proprietary technology on the ham bands causes some folks to get worked up about it, especially proponents of an open source world. See my blog posting: Digital Voice at Pacificon and this presentation by Bruce Parens K6BP: AMBE Exposed. Codec2 is an alternative open voice codec developed by David Rowe, VK5DGR. David is doing some excellent work in this space, which has already produced an open codec that is being used on the ham bands. FreeDV is an umbrella term for this open codec work. Here’s a recent video of a presentation on FreeDV by VK5DGR.
It will be interesting to see if and how Codec2 gets adopted in a DV world already dominated by AMBE. After all, a new codec is another contributor to the digital cacophony. On the HF bands, it is easier to adopt a new mode if it can be implemented via a soundcard interface (which FreeDV can do). Any two hams can load up the right software and start having a QSO. The same is true for weak-signal VHF/UHF via simplex. (Note that Flexradio also supports FreeDV, showing how Software Defined Radio (SDR) has an advantage with adopting new technology.) VHF/UHF repeaters are trickier because you must have a solution for both the infrastructure (repeaters and networks) as well as the user radios.
The vast majority of digital repeaters support just one digital format. For example, a D-STAR repeater does not usually repeat DMR or YSF transmissions. Interestingly, DMR and YSF repeaters often support analog FM via mixed mode operation for backward compatibility. It is definitely possible to support multiple digital formats in one repeater, but the question is will large numbers of repeater owners/operators choose to do that? With existing DV systems, the networking of repeaters is unique to each format which represents another barrier to interchangeability. In particular, most of the DMR infrastructure in the US is MOTOTRBO, which won’t ever support D-STAR or YSF.
In the case of a new vocoder, we can think of that as just a new format of bits being transported by the existing DV protocol. DMR, for example, does not actually specify a particular vocoder, it’s just that the manufacturers developing DMR equipment have chosen to use AMBE technology. So from a technical viewpoint, it is easy to imagine dropping in a new vocoder into the user radio and having it work with other identical radios. Of course, these radios would be incompatible with the existing installed base. Or would they? Perhaps we’d have a backwards compatibility mode that supports communication with the older radios. This is another example of putting more flexibility into the user radio to compensate for DV incompatibilities.
One objection to AMBE is the cost of the technology, especially when compared to free. When D-STAR radios first started using AMBE codec chips, the chip cost was rumored to be $25 to $50, but I don’t have a solid source on that. Now, I see that Tytera is selling a DMR handheld at around $100, including AMBE technology inside, so the codec can’t be very expensive. If a free codec starts to be a credible threat, it will put additional pricing pressure on the AMBE solution.
A potential advantage of Codec2 is superior performance at very low signal-to-noise ratio. We’ve all experienced the not-too-graceful breakup of existing DV transmissions when signals get weak. Some of the Codec2 implementations have shown significant improvement over AMBE at low signal levels.
Conclusions
Repeating a key conclusion from Part 1:
- For the foreseeable future, we will have D-STAR, DMR and YSF technologies being used in amateur radio. I don’t see one of them dominating or any of them disappearing any time soon.
Adding in these conclusions for Part 2:
- Codec2 will struggle to displace the proprietary AMBE vocoder, which is well-established and works. The open source folks will promote codec2 but it will take more than that to get it into widespread use. Perhaps superior performance at low signal levels will make the difference.
- Repeater owner/operators will continue to deploy single-DV-format repeaters. This will make multiformat radios such as the DV4mobile be very attractive. In other words, we will deal with the digital cacophony by having more flexible user radios. This will come at a higher price initially but should drop over time.
Repeating this one from Part 1:
- A wild card here is DMR. It benefits from being a commercial land mobile standard, so high quality infrastructure equipment is available (both new and used gear). And DMR is being embraced by both land mobile providers (i.e., Motorola, Hytera) and suppliers of low cost radios (i.e., Tytera, Connect Systems). This combination may prove to be very powerful.
Well, those are my thoughts on the topic. I wish the DV world was less fragmented but I don’t see that changing any time soon. What do you think is going to happen?
73, Bob KØNR
The post The Cacophony of Digital Voice Continues (Part 2) appeared first on The KØNR Radio Site.
SOTA Activation: Ormes Peak (W0C/FR-052)
I’ve been thinking about activating Ormes Peak (W0C/FR-052) for a while now. It is not too difficult to get to and is not a difficult climb. After the Waldo Canyon fire (2012), the area was closed for several years, so I needed to be patient. Then I noticed that Don KØDRJ put an alert on SOTAwatch indicating that he was going to activate the summit, so I gave a listen on 146.52 MHz. Sure enough, around mid-morning I heard Don on the frequency and worked him without any problem from my home location.
Then I got to thinking. Joyce KØJJW and I had talked about going for a walk this afternoon, so I did a little checking on Ormes Peak and concluded that it was an option. My fractured ankle is still on the mend so I am not back to 100% of my hiking ability. Ormes seemed like a good next step that would keep me progressing.
We hopped in the Jeep and headed to Rampart Range. To get to Ormes Peak, take USFS road 300 from the north (which is what we did, via Mount Herman Road) or from the south via Garden of the Gods. You’ll want to have a Pike National Forest map for this trip.
Turn East onto USFS road 303 and then follow USFS 302 (these roads are easy 4WD, probably OK for high clearance 2WD). These roads go through the Waldo burn area so you see what a burned forest looks like. Ormes Peak was not directly affected by the fire but we did see a few burned trees on the mountain. According to the Summit Post info, the best approach is from the south but we continued on around to the east and parked at the marked parking area here: 38.948680 deg N, 104.929677 deg W. From there, we bushwacked westward up the side of the hill without too much trouble (about half a mile and 600 feet vertical).
Once on top, I started calling on 146.52 MHz using the FT-1D handheld transceiver. I assembled my 2m yagi antenna hoping to work Brad WA6MM headed up Mt Antero but I found out later he did not summit. We had excellent visibility in all directions: great view of Pikes Peak to the south, Mt Yale and a sliver of Mt Princeton to the west and Mt Evans to the northwest. This really is a great spot to just sit and enjoy the view.
After making 7 contacts on 2m fm, we packed up the gear and headed down the mountain. Ormes Peak is a good “close in” summit accessible from Colorado Springs area.
73, Bob KØNR
The post SOTA Activation: Ormes Peak (W0C/FR-052) appeared first on The KØNR Radio Site.
The Cacophony of Digital Voice Continues (Part 1)
It wasn’t that long ago that I commented on the state of digital voice on the VHF/UHF ham bands: Digital Voice Balkanization. We have three main competing (incompatible) standards in the running: D-STAR, DMR and Yaesu System Fusion (YSF). At a high level, these three formats all do the same thing but there are significant differences in implementation (See Comparison of Amateur Radio DV by Roland Kraatz W9HPX.) All three of these are (arguably) open standards, allowing anyone to implement equipment that supports the standard. However, the reality is that D-STAR is still largely an ICOM system (with Kenwood joining the party), YSF is mostly a Yaesu system and DMR is…well, DMR is not deeply embraced by any large amateur radio equipment supplier. Instead, DMR is promoted heavily by Motorola for the commercial market via their MOTOTRBO product line. Another big factor is the availability of DMR radios from some of the low cost providers in the ham market: Connect Systems, Tytera MD-380. Baofeng has also announced a DMR radio but it has some potential shortcomings.
D-STAR has a clear head start versus the other DV standards and is well-entrenched across the US and around the world. DMR and YSF are the late comers that are quickly catching up. To put some numbers on the adoption of DV technology, I took at the digital repeater listings in the August issue of the SERA Repeater Journal. SERA is the coordinating body for Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee, Virginia and West Virginia. This is a large region that includes rural and large urban areas, so perhaps it is a good proxy for the rest of the country. I just considered the listings for D-STAR, DMR and YSF repeaters, some of which are set up as mixed-mode analog and digital repeaters.
D-STAR 161 39% DMR 136 33% YSF 121 29% Total: 418 100% SERA Repeater Journal - August 2016
I was definitely surprised at how the DMR and YSF numbers are in the ballpark with D-STAR. Of course, we don’t know for sure how many of these repeaters are actually on the air or how many users are active on each one. Still, pretty impressive numbers. (And I did not bother to count the analog FM repeaters but those numbers are way higher, of course.)
It is the repeater clubs and repeater owners that drive the deployment of infrastructure for new technology. To some extent, they are driven by what their users want but also by their own technical interests and biases. One of the positive factors for DMR is that most of these systems are Motorola MOTOTRBO. Hams involved in commercial land mobile radio are exposed to that technology and naturally port it into the amateur radio world. MOTOTRBO is actually not that expensive and it’s built for commercial use. YSF received a big boost when Yaesu offered their repeater for $500 to clubs and owners that would put them on the air. By using Yaesu’s mixed analog/digital mode, it was an easy and attractive upgrade for aging repeater equipment.
Disruption From New Players
Early on in the world of D-STAR, the DV Dongle and DV Access Point by Robin AA4RC allowed hams to access the D-STAR network without needing a local repeater. This basic idea has continued and evolved in several different directions. For example, the DV4Mini is a cute little USB stick that implements a hot spot for…wait for it…D-STAR, DMR and YSF. This is very affordable technology (darnright cheap) that lets any ham develop his or her own local infrastructure. We don’t need no stinkin’ repeater. DV MEGA is another hot spot, supporting D-STAR, DMR and YSF. I guess somebody forgot to tell these guys they have to choose one format and religiously support only that one.
OK, so that’s one way to solve the babel fish problem…support all three formats in one device. And that’s what the DV4 mobile radio promises to do as well: “This DV4mobile is a tri-band VHF/UHF transceiver (2m, 1.25m and 70cm) that supports DMR, D-STAR and C4FM ( or “fusion”) all in one box.” Heck, let’s throw in LTE while we are at it, it’s only software. This site says the radio will be available Q4 2016. Well, it’s Q4, so maybe it will be here soon.
Conclusions
So let’s wrap up Part 1 of this story. What can we conclude?
- For the foreseeable future, we will have D-STAR, DMR and YSF technologies being used in amateur radio. I don’t see one of them dominating or any of them disappearing any time soon.
- Equipment that handles all three of those DV modes will be highly desirable. It is the most obvious way to deal with the multiple formats. Software-defined radios will play a key role here.
- A wild card here is DMR. It benefits from being a commercial land mobile standard, so high quality infrastructure equipment is available (both new and used gear). And DMR is being embraced by suppliers of low cost radios as well. This combination may prove to be very powerful.
The post The Cacophony of Digital Voice Continues (Part 1) appeared first on The KØNR Radio Site.
SOTA Activation: Bald Mountain (W0C/SP-115)
On Saturday, I activated Bald Mountain (W0C/SP-115) for Summits On The Air. It was an awesome fall day here in the Rockies, so Joyce KØJJW and I were ready for some outdoor fun. When you say you are going to the summit of Bald Mountain, the usual response is “which Bald Mountain?” Fortunately, for SOTA purposes we can use the designator (W0C/SP-115) to drive out the ambiguity. Else, you have to deal with the fact there are 32 summits in Colorado known as Bald Mountain. And I am sure there are many more in other states.
SP-115 is a drive-up summit if you have a reasonable 4WD vehicle. For us, this meant taking the Jeep Wrangler to the top. (I am still recovering from a fractured ankle and just starting to hike a bit, so a drive-up opportunity sounded good to me.) Many maps do not show the road up Bald Mountain, so I included a portion of the latitude40smap.com map for the area (below). These recreational maps are excellent quality so I recommend you get one for exploring the area.
This summit is south of Buena Vista on Highway 285, which we exited at Fisherman’s Bridge, heading towards FS road 300. (Refer to the San Isabel National Forest or Latitude 40 map for details.) We followed FS 300 east which is easy 4WD. About 2 miles in, we took FS 300B (marked) to the north which winds its way up Bald Mountain.
At 0.6 miles from the intersection of 300 and 300B, an unmarked 4WD road leads off to the left and proceeds around the west side of the mountain. Taking this route provides a much easier path than the main route leading to the east side of the mountain. (We had taken the main route on our previous activation.) The preferred road does one big switchback out to the west and then returns east to the summit. This road is easy 4WD but is a bit narrow so a full size SUV or truck may have trouble. Of course, you can always hike to the summit…most likely just following the road.
I got out my trusty Arrow 2m yagi antenna, connected it to the Yaesu FT-1D and started calling on 146.52 MHz. It took a while to get my four contacts but I kept at it. Actually, I worked five stations on 2m fm: KEØDMT, KDØMRC, K5UK, KAØABV and NØVXE. I was hoping to work WGØAT who was on the summit of Mount Herman, but I was unable to copy him. Thanks for the contacts! The summit has awesome views of the Collegiate Peaks to the west and it’s worth the trip just for the view.
73, Bob KØNR
The post SOTA Activation: Bald Mountain (W0C/SP-115) appeared first on The KØNR Radio Site.
Rehab for the KØNR Repeater
My UHF repeater has been operating on 447.725 MHz here in Monument for a couple of decades now. It started out as a classic “pet repeater” project and has been operating from my basement all this time. Over time it has picked up additional users and has turned into the de facto hangout for our local radio club.
The repeater system has gone through a number of revisions over the years, especially for the RF transmitter and receiver. I wanted to retire the pair of Motorola Mitrek mobile radios I have been using when they started to exhibit a few lose connections. Really though, I thought it was time for some synthesized, modern RF gear in a compact package.
When Yaesu offered an attractive price on their DR-1X Fusion repeater, I jumped at the chance. Initially, I put it on the air in mixed analog-digital mode with the repeater automatically switching modes to handle either analog FM or C4FM digital. I used the internal controller of the DR-1X which is quite simple and has limited functionality. The DR-1X supports using an external controller but implementing the mixed analog-digital mode is…well…challenging. (Various people have figured out ways to do it with modifications to the DR-1X or using additional hardware.) In the end, I decided to just run the repeater in analog FM mode and have the expanded features of a real controller.
The repeater controller is an SCOM 7K that has been in service for decades. SCOM has long since moved on to a newer, improved model but my 7K keeps on ticking. The 7K has the voice synthesis and autopatch options installed, so, yes the repeater has an autopatch (not that anyone cares). A Yaesu FT-7800R is used as a 2m remote base and the duplexer is a classic Decibel Products. Not shown in the photo is a Bearcat WX100 weather receiver that is used to transmit weather information when an alert occurs in our area.
I’ve documented the wiring diagram and configuration used here: k0nr-repeater-construction-notes
This was a good opportunity to clean up some of the cabling and physical mounting that had degraded over time. (A kluge here, a kluge there and entropy takes over.) I am happy with the result.
73, Bob K0NR
The post Rehab for the KØNR Repeater appeared first on The KØNR Radio Site.
Introducing The Android HT
Some exciting news wandered into my inbox this past week concerning a handheld radio driven by the Android operating system. The RFinder H1 is an FM plus DMR radio to be released at the end of this month. Click to enlarge the photo to the left to get a better view. I had proposed a similar concept back in 2012: The Android HT, so this radio immediately grabbed my attention.
Details are still a bit thin on the RFinder H1 (pronounced “Ar Finder H 1”) but this video gives you a glimpse of its operation. The 70cm band radio apparently also supports GSM and 4G/LTE mobile phone formats.
There are a few other YouTube videos available, one of which emphasizes the easy programming of the radio using the RFinder online repeater directory. This makes perfect sense and is a great example of the power of a connected device. This feature would be very handy for programming up FM repeaters on the fly and outstanding for dealing with the complexity of DMR settings.
The RFinder H1 includes DMR capability, something I wasn’t thinking of back in 2012. That also makes perfect sense…embracing the growing amateur radio format that is based on industry standards.
Very cool development. What do you think?
73, Bob K0NR
The post Introducing The Android HT appeared first on The KØNR Radio Site.