Posts Tagged ‘vhf/uhf’

2021 Colorado SOTA and 14er Event

Steve/WG0AT operating from the summit of Mount Herman (W0C/FR-063)

The Summits On The Air (SOTA) program originated in the United Kingdom but has propagated to most countries around the world. The program came to Colorado on May 1st, 2010 with Steve/WGØAT sending a CQ from Mount Herman, just west of Monument. Today, the SOTA program in Colorado (called WØC-SOTA) is very active with roughly 180 activators that operate from Colorado summits.

To celebrate our 10th AnniversaryWØC-SOTA is organizing a 10-10-10 Event with a challenge for Activators and Chasers alike. (Activators operate from summits, Chasers try to contact them.)

Activator challenge: Activate 10 (or more) 10K feet (or higher) summits (in Colorado/WØC) within 10 days.

Chaser challenge: Chase Activators on 10 different (or more) qualifying WØC summits (10K or higher) within the 10 days.

Event Date: We will kick-off the event in conjunction with the Colorado 14er event on August 7th, 2021 and conclude on August 16th.

Everybody is invited to participate, either as an Activator or a Chaser. Block off these days in your calendar now and start planning for how you can participate. Feel free to operate as much or as little as you would like. It is all about having fun messing around with radios. Any HF, VHF or UHF band can be used for making SOTA contacts, with the most popular ones being 40m (CW & SSB), 20m (CW & SSB) and 2m (FM).

Note that the recommended 2m FM frequencies for the 14er event have changed to:

146.580 FM   North America Adventure Frequency
146.550 FM    Simplex Alternate
146.490 FM    Simplex Alternate
146.520 FM    National 2m FM Calling Frequency
(as needed, please don’t hog the calling frequency)

There will be a leaderboard on the W0C-SOTA website showing all participants who meet one of the challenges. More details will be announced on the WØC-SOTA Website as soon as they are hashed out.

For more information on the SOTA program in general, see the worldwide SOTA website.

Full Disclosure: May 1 is actually the 11th Anniversary, but the COVID-19 Pandemic interfered in 2020, so we are catching up.

The post 2021 Colorado SOTA and 14er Event appeared first on The KØNR Radio Site.

VHF SOTA Antenna Tests

A perpetual ham radio question is always which antenna is best? I have several different antennas and antenna configurations for working VHF SOTA and decided to do some comparisons.

Eagle Rock – W0C/SP-113

To test out some of our 2m SOTA antennas, Joyce/K0JJW and I went to Eagle Rock (W0C/SP-113) with an elevation of 9710 feet. I did the radio operating while Joyce collected the data. Eagle Rock pokes up out of South Park, which is a broad, high plain in central Colorado. This summit is kind of “mid-range” for Colorado…not as high as the 14ers but with significant elevation and prominence (~500 feet). It also was close enough to a number of SOTA chasers so I could get some good S-meter readings to compare antennas. On the summit, there is a clear 360-degree horizon, dropping off quickly in all directions.

Antennas Tested

Antenna A is our GO-TO antenna for VHF SOTA is the 3-element Yagi from Arrow Antenna, handheld so the boom is about 5 feet off the ground. Arrow does not specify the gain on this antenna but it has been measured at the Central States VHF Society conference to be ~6dBd.

Antenna A: Arrow 3-element Yagi for 2 meters.

Antenna B is a dual-band J-pole manufactured by N9TAX, supported by a telescoping fishing pole commonly used by SOTA activators. A J-pole has a halfwave radiator, so the gain is about 0 dBd, the same as a dipole.

Antenna B: Rollup J-pole (N9TAX) on a fishing pole.

Antenna C is an RH770 telescopic antenna mounted on a monopod, using a bracket that I made. See VHF/UHF Omni Antenna for SOTA Use. This antenna is a halfwave on 2 meters, so again we’d expect the gain to be ~0 dBd. The antenna is supported by a monopod which I usually just stick into the ground or strap to a bush.

Antenna C: RH770 Telescopic BNC dualband antenna on a monopod.

The three antennas being tested were driven with short coaxial cables fitting with BNC connectors for easy changes. The transceiver was a Yaesu FT-90 powered by a small Bioenno battery.

Chaser Stations

I put the word out that I’d be doing some antenna comparisons and five chasers showed up to assist. (There were are few other chasers that were too close to Eagle Rock such that the S meter readings would have all been “full scale” and not useful.)

Most of these stations were not line-of-sight because there is mountainous terrain blocking the direct path. This makes for a good test because this is often the situation when doing SOTA activations in Colorado. We often have mountains in the way, even on the high summits. Said another way, line of sight contacts are easy-peasy and the antenna performance is not critical. Getting the signal to punch through or around mountains is when the antenna really matters.

WZ0N was line-of-sight from Eagle Rock. KN0MAP was not line-of-sight and he had his Yagi antenna pointed at Pikes Peak (away from Eagle Rock). This is a common technique on VHF…point at a high summit and hope you get enough of a reflection to make the contact. The chasers are listed below.

CallsignEquipmentDistance/Terrain
W0BVIcom IC-2730, X200A antenna, 35 watts42 miles, blocked by a ridge
AD0WBKenwood TH72A, X300A antenna, 5 watts39 miles, blocked by mountains
KN0MAPYaesu FT-857, 10-element Yagi pointed at Pikes Peak35 miles, reflecting off Pikes Peak
WZ0NBaofeng HT, 5 watts29 miles, Direct line of sight
K0MGLYaesu FT-8900, 1/4-wave ground plane antenna, 10 watts32 miles, blocked by mountains

Signal Reports

Your typical FM VHF/UHF radio doesn’t have a real S meter, just a bar graph display, so we worked in terms of “number of bars”. This does not give us a calibrated measurement but it does provide for a valid comparison. A signal that is 5 bars is stronger than one with 3 bars, but we don’t really know how much better (in terms of dB or S units). We recorded meter readings at both ends of the radio contact. My Yaesu FT-90 meter has 7 bars as full scale. On transmit, I was running the FT-90 at 20 watts.

Antenna A
Yagi
Antenna B
J-pole
Antenna C
RH770
CallsignReport Sent by K0NRReport Received by K0NRReport Sent by K0NRReport Received by K0NRReport Sent by K0NRReport Received by K0NR
W0BV463222
AD0WB5Full scale3Full scale, a little noisy4Full scale
KN0MAP46nilnil
WZ0N755454
K0MGL7611, very noisy10, very noisy

A quick look at the Antenna A column shows that the Yagi had consistently better signal levels than the other two antennas.  For each contact, I did point the Yagi in the direction of the strongest signal, taking care to maximize the signal. This is an advantage and disadvantage…you have to point the antenna but you do get a stronger signal.

The two omnidirectional antennas (B and C) did not require pointing and they performed about the same. My impression is that Antenna B had slightly better overall performance based on listening to the FM noise. But note that the AD0WB readings were slightly better with Antenna C.

As is very common in the mountains, we experienced multipath distortion. This occurs when the signal takes multiple paths to the other station (reflecting off mountains) and then recombines at the receiver creating distortion and variation in signal level. Small changes in antenna position can cause a change in the signal level and amount of distortion. Multipath distortion was much more noticeable on the omnidirectional antennas. The Yagi antenna exhibited multipath but at a much-reduced level. This is a well-known phenomenon: directional antennas reduce multipath effects.

Another factor that I believe is important is that Eagle Rock pokes up quite dramatically compared to the surrounding terrain. Compare this to a large, flat summit that could shadow your signal at some angle of radiation. Antenna height relative to the immediate summit terrain might be more important. Another factor is that Eagle Rock is pretty much granite and not very conductive. So there is not much difference between having an antenna 5 feet off the ground (rock) vs putting it up on a mast.

Previously, I wrote about Charlie/NJ7V’s video that compared a roll-up J-pole with a 3-element Arrow Yagi antenna on two meters. Charlie’s results were a bit different, indicating that the J-pole was about the same or in some cases better than the Yagi.

Conclusions

The Yagi antenna clearly outperformed the two other antennas. So the Arrow 2m Yagi will continue to be our antenna of choice.

The paths to K0MGL and KN0MAP were the most difficult and this is where the Yagi performance really came through. For KN0MAP, we were both pointed at Pikes Peak and working off the reflection. This method worked well with the Yagi but had significant signal loss such that the omni antennas could not make it. Working K0MGL on the omni antennas was not much better but we did squeak out two contacts.

I was a bit surprised that Antenna B did not do significantly better than Antenna C, due to antenna height. This all seems to indicate that once you are on top of a rocky SOTA summit, additional antenna height does not matter. (It would be interesting to do some experiments with the same antenna set at different heights.) I do like having an omni antenna available so that we can monitor in all directions while eating lunch, etc. If we only have the Yagi at lunch time, it is usually laying on the ground or stuck into a tree, certainly not effective in all directions. Antenna C is so easy to deploy, it will probably be my preferred omnidirectional antenna.

This is just one test and one set of results. It will be interesting to do some further comparisons from other locations. Thanks to the chasers for assisting with these tests.

73 Bob K0NR

Test data in Excel spreadsheet:  Antenna comparisons – 2m FM Eagle Rock

The post VHF SOTA Antenna Tests appeared first on The KØNR Radio Site.

Monitor Marine VHF Near the Ocean

When on a road trip, I usually monitor the 2m FM calling frequency, 146.52 MHz. For the most part, that frequency is pretty quiet but sometimes a fellow traveler, camper, SOTA activator or random ham shows up on frequency. I don’t usually bother with tuning into local repeaters as that requires frequent adjustment of the radio while cruising down the highway.

Our RV has an Icom IC-2730A transceiver that covers the 2m and 70 cm bands. This radio has two receivers, so one receiver is set to 146.52 and other one is set to “something else.”  Sometimes, I’ll go ahead and put one of the local repeaters in the other receiver, especially if we are going to hang out in one location for a while.

When driving near coastal areas, I often put the second receiver on the VHF Marine Channel 16 (156.80 MHz). This is the International Hailing and Distress Frequency for marine radio. You will hear boats calling each other on this channel, then switching to another working channel. It is also common to hear the U.S. Coast Guard come on the air with an announcement. (The USCG may say switch to Channel 22 to hear the announcement.)

Some other useful marine frequencies:

Channel 22   157.100 MHz   Coast Guard Liason Channel
Channel 68   156.425 MHz   Non-Commercial Working Channel

The complete list of VHF Marine frequencies are available here:

U.S. VHF Marine Radio Channels and Frequencies

Just another frequency to listen to when on the road.

73 Bob K0NR

 

The post Monitor Marine VHF Near the Ocean appeared first on The KØNR Radio Site.

Parks, Summits and Roadtripping

Getting out on the road and exploring is always fun, especially if you have ham radio on board. Joyce/K0JJW and I have been doing quite a bit of travel lately and we just completed our longest road trip so far with our RV.

Overview of the trip: Colorado to Key West, Florida and back again.

Our main destinations for the trip were four national parks: Congaree NP, Biscayne NP, Everglades NP, and Dry Tortugas NP. This determined the main route but we also found plenty of other things to do along the way. We started in Colorado, cut the corner across New Mexico into Texas, then east through Oklahoma, Arkansas, Mississippi, Alabama, Georgia and South Carolina. Then we headed south to Florida and ended up in Key West. Our return trip followed the gulf coast back to Texas, then back home.

Travel Philosopy

Planning a trip is full of trade-offs, so it is useful to have a general approach that the participants agree on. Our approach to this trip was to not drive too far every day but drive enough to hit the various places we wanted to visit. We are still working to find the right balance. This trip lasted 39 days, covering 6000 miles, which is about 150 miles per day. Some days we drove very little and other days were longer, maybe 400 miles.

Although the trip was created around the national parks, we filled in with interesting stops along the way. In particular,  we like to camp at state parks: the campgrounds are great and there’s usually something interesting about the park to enjoy. And did I mention they are natural Parks On The Air (POTA) opportunities? We also tried to work in some Summits On The Air (SOTA) activations that are relatively easy to access.

Rocky Victoria

Our recreational vehicle (RV) is a 2018 Winnebago Paseo, built on a Ford Transit chassis. We named her Rocky Victoria, using non-standard phonetics, but usually just refer to her as “Rocky”.

Rocky Victoria is our Winnebago Paseo RV.

Compared to your typical car or SUV, this Class B RV is huge. Compared to other RVs, this vehicle is small, about 22 feet long, usually fits in a standard parking space. With all of the normal RV stuff installed (stove, microwave, sink, refrigerator, toilet/shower combo, bed, etc.) there is not a lot of room left for personal gear.

Rocky fits us really well because it is easy to drive, getting in and out of places without much hassle. Also, setup and tear-down time at a campsite is minimal. One limitation is poor ground clearance, which is fine for forest service roads in good condition but not appropriate for offroad use. This affects what SOTA and POTA activations we do.

Radio Gear

We have an ICOM IC-2730A in Rocky, for normal 2m/70cm FM comms while running down the road. The antenna (not visible in the photo) is just a short whip on the driver’s side of the hood.

Rocky is not a big RV so by the time we load up all of our stuff, it is full. So the radio gear (and everything else we take along) must follow the backpacker principle of “take only what you need, use what you take.” No room for extra stuff you don’t use.

For this trip, we took along two ham stations:  A basic VHF SOTA station and a capable, picnic-table POTA station.

VHF SOTA Station

The VHF SOTA station is very compact and easy to carry. It covers the 2m and 70cm bands on FM, which is usually sufficient for us. The RF output power is only 5W, so it does not have the punch of one of our higher power radios. Not a bad tradeoff though.

Two Yaesu FT-1DR 2m/70cm handheld transceivers
Arrow 3-element Yagi 2m antenna
Two RH 770 dualband SMA antennas
HT chargers and other accessories

Picnic Table POTA Station

The POTA station is built around the FT-991, which is a 100 watt transceiver (HF/VHF/UHF) that is reasonably compact. We use a 20 Ah LFP battery to power the radio so it is portable and independent of the RV power sources.

Yaesu FT-991 Transceiver (HF, 6m, 2m, 70cm)
End-fed halfwave antennas for 40m, 20m, 17m, 15m, 10m
Roll-up j-pole antenna for 2m/70cm
20-foot fishing pole to support antennas
Two 25-foot lengths of RG-8X coaxial cable
12V, 20 Ah LFP Battery (Bioenno Power)

Joyce/K0JJW operates the picnic-table POTA station.

The POTA station does a great job at a campsite, usually on a picnic table. The POTA station fits inside my Kelty backpack so it can be taken for a hike. It is a bit heavy for a typical SOTA summit but works OK for drive-up and short-hike summits. It can also be set up inside the RV if required.

Single-band end-fed halfwave antenna (PAR EndFedz) for 20 meters.

Typically, we are going to try operating on 20m or 17m so that the halfwave antenna easily hangs from the fishing pole support. Depending on conditions, we often have to use 40m which takes a little more work to hang. Not a huge problem, though.

Collapsible fishing pole for supporting wire antennas.

For portable operating, I’ve tended to use a variety of end-fed wire antennas supported by a non-conductive pole of various sizes. For this trip, we used a 7 meter (21 feet) telescoping fishing pole that collapses to about 30 inches.  This pole will fit into my SOTA backpack.

20m halfwave antenna supported by the fishing pole mounted on the RV. (The 20m halfwave needs to be hung at an angle to be supported off the ground.)

To support the fishing pole directly from the RV, I attached a short length of plastic pipe to the ladder. It is a simple matter to slide the pole into pipe, resulting in the top of the pole being about 26 feet off the ground.

A short piece of plastic pipe is attached to the RV ladder so the fishing pole can be easily inserted.

The combination of the two stations gives us a lot of options for ham radio operating.

Summits On The Air

We activated three summits along the way: Mount Scott (W5O/WI-002) in Oklahoma, Choctaw County HP (W5M/MS-001) in Mississippi, and Monte Sano Mountain (W4A/HR-002) near Huntsville, AL.

Monte Sano Mountain is just east of Huntsville, AL inside Monte Sano State Park.

Monte Sano Mountain turned out to be a unique location because it is located in the Monte Sano State Park. The park surrounds the summit, which is broad and flat. We determined that the park campground is within the activation zone, so we camped there and did both SOTA and POTA activations.

Parks On The Air

We did a number of POTA activations along the way. This was done opportunistically, typically in the afternoon after we had set up our campsite. Our radio operating used SSB on 20m or 40m, along with a few 2m FM contacts.

K-0688  Lake Meredith National Recreation Area   US-TX
K-1090  Lake Chicot State Park   US-AR
K-1048  Monte Sano State Park  US-AL
K-0017  Congaree National Park US-SC
K-1832  Anastasia State Park  US-FL
K-0024  Everglades National Park  US-FL
K-0635  St. George State Park  US-FL
K-2992  Brazos Bend State Park  US-TX

Every one of these activations was a lot of fun. There’s nothing like sitting outdoors in the sunshine working a pileup of enthusiastic POTA hunter stations.

Summary

In this post, I emphasized the ham radio activity during this trip. Radio operating was not our main goal but it was a big part of the overall experience. Joyce and I had a fantastic time touring this section of the country, and we are looking forward to our next trip.

73 Bob K0NR

The post Parks, Summits and Roadtripping appeared first on The KØNR Radio Site.

Celebrating 10 Years of Summits On The Air in Colorado

Steve/WG0AT on a SOTA activation with pack goat Rooster.

The Summits On The Air (SOTA) program originated in the United Kingdom but has propagated to most countries around the world. The program came to Colorado on May 1st, 2010 with Steve/WGØAT sending a CQ from Mount Herman, just west of Monument. Today, the SOTA program in Colorado (called WØC-SOTA) is very active with roughly 180 activators that operate from Colorado summits.

To celebrate our 10th AnniversaryWØC-SOTA is organizing a 10-10-10 Event with a challenge for Activators and Chasers alike. (Activators operate from summits, Chasers try to contact them.)

Activator challenge: Activate 10 (or more) 10K feet (or higher) summits (in Colorado/WØC) within 10 days.

Chaser challenge: Chase Activators on 10 different (or more) qualifying WØC summits (10K or higher) within the 10 days.

Event Date: We will kick-off the event in conjunction with the Colorado 14er event on August 7th, 2021 and conclude on August 16th.

Everybody is invited to participate, either as an Activator or a Chaser. Block off these days in your calendar now and start planning for how you can participate. Feel free to operate as much or as little as you would like. It is all about having fun messing around with radios. Any HF, VHF or UHF band can be used for making SOTA contacts, with the most popular ones being 40m (CW & SSB), 20m (CW & SSB) and 2m (FM).

There will be a leaderboard on the W0C-SOTA website showing all participants who meet one of the challenges. More details will be announced on the WØC-SOTA Website as soon as they are hashed out.

For more information on the SOTA program in general, see the worldwide SOTA website.

Full Disclosure: May 1 is actually the 11th Anniversary, but the COVID-19 Pandemic interfered in 2020, so we are catching up.

 

The post Celebrating 10 Years of Summits On The Air in Colorado appeared first on The KØNR Radio Site.

Here’s the SOTA Transceiver I’d Really Like

Joyce/K0JJW and I did another activation of Mt Herman (W0C/FR-063) today. This is a repeat summit for us this year but we were looking for an easy hike not too far from home.

The Yaesu FT-90 transceiver is small and lightweight, perfect for portable operating when you need a little more RF power.

As usual, we were just using the VHF/UHF bands for the activation. My favorite rig for this type of SOTA activation is a Yaesu FT-90, a very compact mobile transceiver (4 x 1.2 x 5.4 inches) that is no longer manufactured. It has a unique heatsink with an integral fan that can handle the heat from the 50-watt transmitter.  We use a Bioenno 4.5 Ah LFP battery to supply the power for the radio.

I was trying to work Bob/W0BV about 65 miles away and we were not able to complete the contact. The distance is not too difficult but there are several mountain ranges in the way. Sometimes we can get the electromagnetic waves to sneak through, but not today. Hiking down the mountain, I was thinking about how we could have probably made the QSO on SSB or CW, instead of FM.  I chose not to bring the all-mode transceiver (FT-817) along today, so that was not an option.

That is when the idea hit me. The FT-90 is the right form-factor and power level for VHF/UHF SOTA but it is limited to FM. Yaesu, if you are listening, here’s what I’d really like to see in a small mobile transceiver:

  • FT-90 size radio, perhaps a little larger but not much
  • 2m and 70 cm bands (include 1.25m if you’d like)
  • At least 25 watts of output power, more would be better (say 50 watts)
  • All mode capability (CW/SSB/FM/Digital), sure go ahead and toss C4FM in too.
  • No internal battery…I’m going to have to use an external battery anyway to get enough battery capacity

At various times, I have had people ask “why don’t they put SSB in handheld radios?” They recognize that SSB has weak-signal advantages over FM, so they wish their handheld transceiver (HT) could do it. I say rather than shove more features into an HT, put it in an FT-90 size radio. It would be a much more usable solution.

Although I arrived at this radio concept thinking about SOTA, it would also be a great mobile rig for general use. The FT-90 was popular because it was very compact AND it had a removable faceplate that could be mounted almost anywhere. There really is no way to get VHF/UHF SSB into a vehicle other than those all-band radios like the FT-857 and the IC-7100. Oh, did I say FT-857? Sorry, that model has been discontinued. The satellite operators will love it, too, especially if it could work 2m/70cm crossband full-duplex.

So there you go, Yaesu (or Icom)…a fantastic product concept at no charge. I would be happy to beta test it for you.

That’s my idea for today. What do you think?

73 Bob K0NR

The post Here’s the SOTA Transceiver I’d Really Like appeared first on The KØNR Radio Site.

Looking at VHF/UHF SOTA Data

On Twitter, someone recently commented that it would be nice to have more 2m SSB activity for Summits On The Air (SOTA). It is well known that FM is a more commonly used mode but that its performance suffers for weak signals. This got me wondering about which bands and modes are being used for SOTA above 50 MHz.

Above and Below 50 MHz

First off, I wondered what portion of SOTA radio contacts are on VHF/UHF. Looking at the SOTA database Facts and Figures page, I simply grouped the number of QSOs as “Above 50 MHz” and “Below 50 MHz.”

FrequencyQSOs% of Total
Above 50134620621%
Below 50514454779%
Total6490753100%

So we can see that about 1/5th of the SOTA QSOs are done using VHF and higher frequencies. Certainly, we’d expect that the HF bands would dominate the total but this VHF+ percentage is higher than I expected.

Breaking Down > 50MHz

That leads to the question of what bands are used above 50 MHz? The table below shows the >50 MHz data broken out by band. The % of Total column indicates the percent of all QSOs (Above and Below 50 MHz), while the % of >50 MHz column shows the percentage relative to only >50 MHz radio contacts. Simply put, the % of Total column will sum to 21%, matching the number in the first table. The % of >50 MHz column sums to 100%.

FrequencyQSOs% of Total% of >50 MHz
50MHZ :480350.74%3.57%
70MHZ :109210.17%0.81%
144MHZ :120231118.5%89.3%
220MHz :10640.02%0.08%
433MHZ :1262021.94%9.37%
900MHz :2040.00%0.02%
1240MHZ :125260.19%0.93%
2.3GHZ :15540.02%0.12%
3.4GHz :1420.00%0.01%
5.6GHZ :4680.01%0.03%
10GHZ :11860.02%0.09%
24GHZ :1670.00%0.01%
Microwave :3820.01%0.03%

Well, it doesn’t take a degree in statistics to see that the 144 MHz band (2 meters) is the most popular VHF/UHF band for SOTA. Almost 90% of the QSOs are on this band. The next most used band is 433 MHz (70 cm) at a little over 9%. The 6m band (50 MHz) comes in at third with about 3.5%. The other bands are so small, they don’t really add much to the total.

The data on the SOTA page does not break out mode used by band but it does provide some aggregate mode numbers. The number of FM contacts (using any band) is 1186542. It is reasonable to assume that almost all of these FM QSOs were made above 50 MHz. (FM is used a bit on the 10m band but that combination is rare in SOTA.) That means, for frequencies >50 MHz, 88% of the QSOs (186542/1346206) were completed using FM.  We don’t know how the remaining 12% splits out but I would expect them to be a mix of SSB and CW, but dominated by SSB.

Given the high number of 144 MHz contacts in the mix, it is safe to say that 2m FM is the dominant mode for VHF/UHF SOTA. After all, it is The Utility Mode. The reasons are obvious…almost every radio ham has a handheld transceiver that can do 2m FM. It makes for an easy way to get on the air and active a summit. More importantly, it is an easy way to chase a summit. When I plan a SOTA activation, I think about the kinds of operators that will be within range and what kind of gear they are likely to have. It does me no good to drag along equipment for 2m SSB/CW if there is no one around to work that band/mode.

This analysis does confirm that the number of non-FM QSOs on VHF/UHF is relatively small. The 12% of non-FM QSOs above 50 MHz corresponds to only 2.5% of all SOTA QSOs. So why is this? Clearly, the affordability and popularity of the FM handheld transceiver is a big factor.  There are portable radios that can do “all modes” on VHF/UHF such as the Elecraft KX3 (2m option), Yaesu FT-818, and the Icom IC-705, but these are much more expensive.

What About 70cm and 6m?

Now, it is interesting that the 70cm numbers are small compared to 2m. Many of those handheld transceivers that get used for 2m also have 70cm included, so you might expect there to be more 70cm QSOs in the mix. For a given boom length, a 70 cm Yagi antenna will have more gain than a 2m Yagi. So gain is easier to come by on the higher band.

Note that the SOTA rules do not encourage working the same station on more than one band. You only get credit for working a station once on an activation. (Compare this to VHF contest scoring which usually adds in additional credit for working stations on multiple bands.) So if a chaser works someone on 2m, they typically don’t bother working them on other bands.  I am not saying this is bad, I am just trying to explain why we don’t see more QSOs on 70cm.

The other band you might expect to see more activity is 50 MHz (6 meters). This band is available to Technicians in the US and, when the band opens up, you can easily work a thousand miles or more via Sporadic-e propagation. (Sometimes F-layer propagation, too, but we’ll need a whole bunch more solar activity for that to happen.) Many HF rigs include 6m as a “bonus band”, even some of the QRP radios popular with the SOTA crowd (KX3, IC-705, etc.) So why are the 6m numbers so low? This band offers a metric ton of fun, but it dishes it out randomly. There is a reason they call it the Magic Band…sometimes the Magic is there and sometimes it is dead quiet. When it’s dead quiet, it is a poor imitation of the 2m band. It also requires larger antennas, so if an activator decides to use antenna gain to help their signal, a portable Yagi for 2 meters is going to be a lot handier than one for 6 meters.

CW and SSB

This data does show that CW and SSB are lightly used for SOTA on the VHF/UHF bands. This is an opportunity. If more of us used these modes, it would improve our ability to squeeze out contacts when the signals are weak.

Bob K0NR

The post Looking at VHF/UHF SOTA Data appeared first on The KØNR Radio Site.


Subscribe FREE to AmateurRadio.com's
Amateur Radio Newsletter

 
We never share your e-mail address.


Do you like to write?
Interesting project to share?
Helpful tips and ideas for other hams?

Submit an article and we will review it for publication on AmateurRadio.com!

Have a ham radio product or service?
Consider advertising on our site.

Are you a reporter covering ham radio?
Find ham radio experts for your story.

How to Set Up a Ham Radio Blog
Get started in less than 15 minutes!


  • Matt W1MST, Managing Editor




Sign up for our free
Amateur Radio Newsletter

Enter your e-mail address: