Why Bother Getting an Amateur Radio License?
Our Amateur Radio and the Maker Community post defined our stance that the future of ham radio is in experimentation and learning. This post builds upon that cornerstone article by outlining why you should even bother getting an amateur radio license. I won’t make points around the ability to talk around the world or independence from infrastructure that are often touted as benefits of ham radio. Instead, I will highlight why as a hardware designer and a software developer having your amateur radio license is a ticket to designing more interesting, useful, and complex projects.
The Federal Communications Commission provided US citizens with an amazing opportunity to experiment with and develop innovative technology when creating Part 97. You should take advantage of this opportunity. Let’s take a closer look at it!
Part 97, Part 15, and Part 18 (ISM)
We’ve seen these terms thrown around with little explanation. Often, they are taken at face value when you come across a transceiver on Adafruit or Sparkfun. In-reality there are very specific reasons a radio may be one or the other and in most-cases not requiring a license is preferred by manufacturers. That’s why Adafruit and Sparkfun do not focus on selling ham radio transceivers. We on the other-hand tailor to radio amateurs. FaradayRF specifies right on our Starter Pack that you must be a licensed radio amateur to use Faraday.
Licensed Versus Unlicensed Spectrum Use
Before we dive into the regulations lets take a moment to talk about the use-cases of each type of radio. We should be careful to directly compare radios such as Faraday which require an individual license against radios such as the Sparkfun RFM69 Breakout as they are aimed at very different use-cases.
Unlicensed radios operating under Part 15 let you do essentially whatever you want as long as you don’t change the manufactured device. There is no requirement to identify who you are and you can encrypt all your communications. Broadcasting is even allowed. Projects looking to connect to WiFi or Cellular networks will absolutely want to be encrypted so they should use these radios. However, as a hardware designer and software developer you’re not allowed to modify the radio or run higher power. Additionally, you’re at the whim of politics and interpretation as seen in the FCC firmware lock-down saga which is still a problem but has been alleviated because some manufacturers are taking a small stand.
Licensed radios operating under Part 97 on the contrary allow you to modify the hardware, firmware, and software to your hearts content. Most operating modes on most bands even allow you to push out 1500W to the antenna (not including antenna gain!) which is honestly just crazy amounts of power. Since most amateur bands give radio amateurs primary or at least privileged use of RF spectrum other users have to accept if you interfere and radio amateurs can also legally challenge interference against unlicensed users if necessary. There are many cases where this power has been helpful and one of the most notable cases is the ARRL and Broadband over Power Lines clash.
While you cannot encrypt your communications the debate is out whether authentication is legal. Exploring authentication will prove to be a fun endeavor in the near future for ham radio. With the lack of encryption the amateur radio community has a completely different feel to it since they want to communicate with each other. Generally, you don’t want your neighbors on your WiFi router but with ham radio we actually want them to join in most of the time. This helps create a community of experimenters that I’m proud to have been a part of since 2004!
Being able to hack at your hardware, firmware, and software just because you passed the easiest amateur radio test to get your technician class ticket makes the effort worth it. Projects like Faraday encourage open communication, open experimentation, and active collaboration on projects that are higher power and longer range than most unlicensed offerings. Next we will explore the differences between the radio services but remember that your amateur radio license doesn’t stop you from using unlicensed radios. It gives you all the privileges aimed at experimentation which I’ve outlined and lasts a lifetime with simple renewals once every 10 years. It’s worth it.
ISM and Part 15 is the Same Thing Right?
No! This is a really easy mistake to make. The Part 18 Industrial, Scientific, and Medical (ISM) band radios are not allowed to be used for telecommunications. See §18.107(c) which defines ISM equipment as “Equipment or appliances designed to generate and use locally RF energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunication“. The ISM bands provide areas of RF spectrum where unlicensed transmissions can occur that are often dirty, broadband, and sporadic. If you’re going to have these types of transmitters emit RF and they generally only need to transmit then grouping them together makes sense.
FCC Part 15 addresses the telecommunications gap for unlicensed use. Part §15.1(a) classifies what types of devices fall under it “This part sets out the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license“. The last part about operating without an individual license is the most important statement. If you do not assume the operator is technically skilled enough to understand proper operation then it’s up to the manufacture to make sure the electronics are compliant as marketed and shipped to the consumer. This makes sense due to the FCC having no ability to determine whether you’re skilled enough to operate legally as a general consumer.
Part 15 Radios Using the ISM Bands
Many wireless solutions for makers and experimenters often operate in the ISM bands. This falls under Part §15.247which defines operation on 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. These bands are three really popular ISM bands with the latter two best known for IEEE 802.11 WiFi use. Even the CC430F6137 used in Faraday is aimed directly at operating under Part 15 on the 902-928 MHz ISM band, that’s why we chose it! There is also a very good reason for manufacturers using ISM bands for unlicensed communications under §15.247. Most Part 18 users who can file complaints against part §15.247 devices do not even attempt to receive in the ISM band. In other words, the lights are on but no one is home.
ISM use is generally used for one-way transmissions such as microwave ovens, medical heating therapy, and IC wafer manufacturing (creating plasma with RF). Most CFL lightbulbs are Part 18 due to the RF energy needed to excite the mercury vapor inside them! Therefore any Part §15.247 radio transmitting on these bands is extremely unlikely to cause any noticeable interference to an ISM device. Secondly, when you as an experimenter use these radios and modify them (however legal that actually is) it will be much more likely that any interference which results will go unnoticed.
So What About Amateur Radio?
The FCC Part 97 rules define what Amateur Radio is. Amateur radio is justified in §97.1 using five points, of which the fourth is our favorite “Expansion of the existing reservoir within the amateur radio service of trained operators, technicians, and electronics experts“. This right here is why we love amateur radio! One of the founding principles of the hobby was to spur innovation.
I will highlight why as a hardware designer and software developer having your amateur radio license is a ticket to design more interesting, useful, and complex projects
You need not look much further before finding §97.103 which clearly states “The station licensee is responsible for the proper operation of the station in accordance with the FCC Rules“. Unlike general consumers the FCC trusts you, a licensed radio amateur, as being capable of properly operating your station. In the more than 100 years of ham radio this expectation of trust and self-regulation has worked out far better than one would initially assume.
So far we’ve only showed you why earning the FCC’s trust is beneficial. Now we will show you what that trust gets you! That’s where §97.303 comes in. Faraday operates on the 33 cm ham band (902-928MHz) as a Part 97 device. More importantly §97.303(b) and §97.303(e) define how we as radio amateurs can use the 33 cm band.
(b) Amateur stations transmitting in the 70 cm band, the 33 cm band, the 23 cm band, the 9 cm band, the 5 cm band, the 3 cm band, or the 24.05-24.25 GHz segment must not cause harmful interference to, and must accept interference from, stations authorized by the United States Government in the radiolocation service.
(e) Amateur stations receiving in the 33 cm band, the 2400-2450 MHz segment, the 5.725-5.875 GHz segment, the 1.2 cm band, the 2.5 mm band, or the 244-246 GHz segment must accept interference from industrial, scientific, and medical (ISM) equipment.
As a maker interested in amateur radio these are profound opportunities. You are allowed to transmit unless you cause interference to the “United States Government in the radiolocation service” and you must receive interference from ISM band devices since we are secondary users of this band. As I stated earlier you are not allowed to interfere with ISM devices but since almost no ISM devices have receivers, interfering would prove very difficult to do in practice.
The requirement not to interfere with the United States Government sounds scary but KB9MWR has a great web-page talking about just what these uses are. In summary, you have little chance of actually being required to stop transmitting due to interfering with government radiolocation services. This leaves the requirement of accepting ISM interference as the only real downside to using the ISM band for ham applications. As long as you are OK with some extra RF noise the 33cm band is wide open for ham radio.
The ISM Bands are Junk!
So, ISM bands are largely relegated to “junk” use and radio amateurs must accept interference from ISM devices when using them. This doesn’t mean you have to stop using them when interfered with, it means you have no legal ability to complain about an ISM device bugging you. This is true for Part 15 devices as well and yet we use ISM bands for communications all the time with WiFi on 2.4 GHz and 5 GHz. Most garage door openers, wireless headphones, and baby monitors use ISM bands as well. For example, sometimes our microwaves cause WiFi to slow down but most of the time we never notice.
Amateurs have often denounced the 33 cm band (902-928MHz) as junk due to the noise heard on it. This however is antiquated advice. Digital transmissions are much less susceptible to observation of noise than analog transmissions. Using 33 cm for FM voice maybe be irritating but digital users may never notice the noise.
This is why Faraday is pushing the use of 33 cm for hams. Combined with the incredible privileges of a ham radio license, Faraday is set to be revolutionary for the 33 cm ham band. We want you to start experimenting, start learning, and start using amateur privileges on the 33 cm ham band.
Go Earn Your Amateur Radio License… Now!
We’ve convinced you that being a radio amateur is pretty badass. We know it is, too. As a designer or programmer you will find it easy to “earn your ticket” with a little study. The opportunities to work on interesting projects with increased functionality, range, and reliability are a few of many reasons an amateur radio license kicks-ass. Using your Part 97 license gives you the right to build more powerful, more complex, and more useful projects than possible using unlicensed radios.
To use Faraday or any other amateur radio transceiver on the 33 cm band you only need a Technician class license in the United States. This is the easiest license to get and requires no Morse Code skills. The AmateurRadio subreddit has an awesome wiki page on what you need to do to become licensed. Check it out, get your license, and push the boundaries of RF experimentation with us.
We are excited to see you get licensed! If we’ve convinced you to get your license please let us know. We’d also love to hear your thoughts on the benefits and drawbacks to using ISM, Part 15, and Part 97 devices here in the United States. Leave us your thoughts in a comment below!
We are simply conversing about published documentation regarding ISM, Part 15, and Part 97 regulations and are not lawyers! Do not take this article as legal advice.
Having gotten my tech ticket back in 2007…there were less free resources available then than there are now. When I completed my AE late in 2011…I was barely able to keep a roof over my head and buy groceries…but I had time between free-lance teaching jobs and found all free resources to be able to take/pass the AE exam. I could do it…anyone can do it. There are way more resources available for anyone to use for free to not take the jump. Hate living in an apartment and not being able to use the JT modes…but when I’m able to do so…will be back at it.
Hi Bryce,
I liked the article and I visited the Faraday site several times. My problem with 33cm is where I live, DM61, in the prohibited area for 33cm. I have been poking around the Ada-fruit site looking at the different radio fruit modules an I’m a bit hesitant, I’m not sure which one and how I would use it. I’m on APRS and have several SDRs (HackRF, Lime SDR, ANAN8000, SDR Play RSP1 and several RTL Dongles). I just got parts for a WiFi synced LED clock, my next project. I have been looking at the M0 RFM96 LoRa Radio and the 32u4 LoRa Radio but not sure which way to go.
73, Larry WB8LBZ
Larry,
Ahh that’s a bummer with the 33cm limits for you. One of the technicalities to work around. Our software is frequency agnostic so when we (or anyone) designs future hardware it will be relatively easy to change frequencies. One step at a time!
LoRa is neat. No tips on which one to go with but keep in mind the hard part is usually the software and making data useable. Whichever module is better supported by a software suite is probably the best to go with!
73’s
Bryce, KB1LQC
Also forgot to mention Larry you should check out LoRaHam!
https://github.com/travisgoodspeed/loraham
This is a very informative article & I’m very pleased to see & read it. I wish there were more well informed or educated individuals who would take the initiative to compose & have publish more of such! Thanks again.
Happy Holidays! 73. Chris O’Donnell KD2OBV
Thanks for the tip. – 73, Larry WB8LBZ
This is a good write up. 33cm is a good band for SSB also. It can be used for rain scatter and just good communications on SSB. Yes digital comms can be don on 33cm also. there are some of us that have worked Chicago from Southern Illinois aprox. 300 miles on 900mhz. or 33cm. you don’t do it every day but have to watch for propagation and be ready for the good times to let it roll. HI HI HI.
Gayland W9AKW